Abstract

Metal oxide affinity chromatography has been one of the approaches for specific enrichment of phosphopeptides from complex samples, based on specific phosphopeptide adsorption forming bidentate chelates between phosphate anions and the surface of a metal oxide, such as TiO2, ZrO2, Fe2O3, and Al2O3. Due to convective mass transfer, flow-independent resolution and high dynamic binding capacity, monolith chromatographic supports have become important in studies where high resolution and selectivity are required. Here, we report the first synthesis and characterization of immobilisation of rutile TiO2 nanoparticles onto organic monolithic chromatographic support (CIM-OH-TiO2). We demonstrate the specificity of CIM-OH-TiO2 column for enrichment of phosphopeptides by studying chromatographic separation of model phosphorylated and nonphosphorylated peptides as well as proving the phosphopeptide enrichment of digested bovine α-casein. The work described here opens the possibility for a faster, more selective enrichment of phosphopeptides from biological samples that will enable future advances in studying protein phosphorylation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.