Abstract

An optical fiber humidity sensor employing an in-house scaled TiO2-nanoparticle doped nanostructured thin film as the fiber sensing cladding and evanescent wave absorption is reported. The main objective of the present work is to achieve a throughout-linear sensor response with high sensitivity, possibly over a wide dynamic range using the simplest possible sensor geometry. In order to realize this, first, the nanostructured sensing film is synthesized over a short length of a centrally decladded straight and uniform optical fiber and then a comprehensive experimental investigation is carried out to optimize the design configuration/parameters of the nanostructured sensing film and to achieve the best possible sensor response. Much improved sensitivity of 27.1 mV/%RH is observed for the optimized sensor along with a throughout-linear sensor response over a dynamic range as wide as 24% to 95%RH with an average response time of 0.01 s for humidification and 0.06 s for desiccation. In addition, the sensor exhibits a very good degree of reversibility and repeatability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.