Abstract

Because of their extremely low amount in complex samples, it is quite challenging to accurate determine residues of phosphorus-containing amino-acid-like herbicides (PAAHs) in food products. Here we develop novel core-shell mesoporous silica (CSMS) microspheres coated by titanium dioxide (CSMS@TiO2) for extraction and enrichment of PAAHs in baby foods. After the dispersive solid phase extraction (d-SPE), sheathless capillary electrophoresis-mass spectrometry (sheathless CE-MS) is utilized to achieve efficient separation and sensitive detection. The synthesized CSMS@TiO2 composites are characterized by various spectroscopic techniques, proving TiO2 is uniformly distributed onto the channel surface of CSMS. The composites have essential features that are favorable for adsorption of the analytes on the material for d-SPE, including uniform diameter (1.0 μm with a shell thickness of 133 nm), large perpendicular mesopores (15.6 nm), high surface area (101.1 m2/g) and large pore volume (0.4 cm3/g). Taking glyphosate, glufosinate and their main metabolites (aminomethylphosphonic acid and 3-methylphosphinicopropionic acid) as analytes, selective and efficient enrichment is achieved by CSMS@TiO2-based d-SPE through the affinity interaction between titanium dioxide and phosphate groups. Sensitive detection of target compounds is achieved with low limits of quantitation (LOQs) between 0.3–1.6 ng/mL and excellent inter/intra-day repeatability. The compounds in nine different commercial baby foods from local markets are analyzed using the proposed method. Good recoveries of 82.3–102.6% are achieved with low RSDs (n = 5) of 2.1–8.3%. Our study indicates that the proposed CSMS@TiO2-based d-SPE combined with sheathless CE-MS is an accurate and reliable approach for sensitive determination of trace-amount PAAHs and their metabolites in complex samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call