Abstract

We developed a new electrochemical sensor based on TiO2 and polypyrrole (PPy) molecularly imprinted polymer (MIP) nanocomposites for the high selective detection of p-nonylphenol in food samples, which is considered as a kind of endocrine disrupting chemical and harmful to human health. With p-nonylphenol as template molecules, the molecularly imprinted polymer was synthesized by the chemical oxidative polymerization of pyrrole and deposited on the surface of TiO2 nanoparticles to form partially encapsulated PPy@TiO2 nanocomposites, denoted as NP-PPy@TiO2 MIP. p-Nonylphenol was bound in the PPy matrix through hydrogen bond and π-π interaction between p-nonylphenol and PPy skeleton. NP-PPy@TiO2 MIP nanocomposites were modified onto glassy carbon electrode (GCE) and p-nonylphenol molecules were excluded from PPy layers by potentiostatic sweeping at the potential of 1.3 V. The as-prepared electrochemical sensor obtained a large amount of micro cavities in PPy layer which could specially recognize and combine target molecules p-nonylphenol. After special adsorption of p-nonylphenol from samples, p-nonylphenol embedded in the PPy layer exhibited a strong differential pulse voltammetry (DPV) response at 0.56 V, which can be used for the detection of p-nonylphenol with a linearly proportional concentration range of 1.0 × 10−8 to 8 × 10−5 mol/L and a detection limit of 3.91 × 10−9 mol/L. The good stability, reproducibility and specificity of the resulting MIP electrochemical sensor are demonstrated. It might open a new window for investigation of selectively electrochemical sensing of small organic molecules from their analogues with the molecular imprinting technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call