Abstract

In the present study, the titanium decorated iron oxide (Ti@Fe2O3) nanocomposites are synthesized using the chemical method. The as-prepared nanocomposite was characterized for successful formulation and the elemental spectra showed the composition of Fe (44%), Ti (0.71%) and O (55%) is confirmed the homogenous distribution. Crystallographic spectra depict the strong peaks corresponding to the of TiO2 and Fe2O3 nanoparticles planes with minor shift variation due to the formulation of Ti on the surface of Fe2O3 nanoparticles and it is also confirmed with SAED analysis. The X-ray photoelectron spectroscopy (XPS) analysis of Ti@Fe2O3) nanocomposite confirms the existence of elements such as Fe, O and Ti. Further, the morphology of the composite showed the well-defined encapsulation and aggregation of TiO2 nanoparticles on the surface of Fe2O3 nanoparticles. Further, the TiO2 nanoparticles showed less cytotoxic activity against bovine satellite cells, as well the nanocomposite increased the growth of bovine satellite cells comparing with control cells. Further, the morphological analysis showed the significant changes in TiO2 nanoparticles treated cells and the nanocomposite induces the myotube formation due to the increased ROS level in bovine satellite cells. Moreover, the nanocomposite regulates the expression of genes IGF-1, TGF-β, MSTN, CASP3, CASP2 and proteins such as CALP1, CALP2, MyoD, MyoG which are responsible for the growth, proliferation, and differentiation of satellite cells. Together, the prepared Ti@Fe2O3 nanocomposites afford additional support for the applications of nanomaterials in skeletal muscle repair and tissue regeneration engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.