Abstract

Titanium-Carbon (Ti-C) multilayer nanostructures were deposed by Thermionic Vacuum Arc (TVA) technology. The layers consisting of about 100 nm Carbon base layer and seven 40 nm alternatively Ti and C layers were deposed on Silicon substrates. The thickness of such a multilayer structure was up to 500 nm. On the other hand, in order to obtain Ti-C multilayer structures with various Ti content, a 20nm thick C layer was first deposed on Si substrate and then seven successively Ti-C layers (Ti and C simultaneously deposed), each of these having a thickness of up to 40 nm were deposed. To perform the successively Ti-C layers with various Ti content were changed the discharge parameters for C and Ti plasma sources to obtain the desirable Ti atomic concentration To characterize microstructure properties of as prepared C-Ti multilayer structures were used Rutherford Backscattering Spectrometry (RBS), Electron microscopy techniques (TEM, STEM), Raman Spectroscopy and electrical measurements.Titanium-Carbon (Ti-C) multilayer nanostructures were deposed by Thermionic Vacuum Arc (TVA) technology. The layers consisting of about 100 nm Carbon base layer and seven 40 nm alternatively Ti and C layers were deposed on Silicon substrates. The thickness of such a multilayer structure was up to 500 nm. On the other hand, in order to obtain Ti-C multilayer structures with various Ti content, a 20nm thick C layer was first deposed on Si substrate and then seven successively Ti-C layers (Ti and C simultaneously deposed), each of these having a thickness of up to 40 nm were deposed. To perform the successively Ti-C layers with various Ti content were changed the discharge parameters for C and Ti plasma sources to obtain the desirable Ti atomic concentration To characterize microstructure properties of as prepared C-Ti multilayer structures were used Rutherford Backscattering Spectrometry (RBS), Electron microscopy techniques (TEM, STEM), Raman Spectroscopy and electrical measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.