Abstract

Pesticide residues create an ecological ecosystem that is incredibly dangerous and presents major risks to human health. To solve this issue, scientists are concentrating on creating extremely effective composites with superior photocatalytic performance. Even if several efforts have been made to remove pesticides and dangerous compounds using adsorption, the development of novel adsorbents with large adsorption capabilities is still very desirable. Here, the photocatalytic of carbamate pesticides in aqueous solution under simulated sunlight irradiation in the existence of Fe3O4, CuO/Cu2O, MIL-125-NH2, Fe3O4@MIL-125-NH2 and CuO/Cu2O@MIL-125-NH2 were investigated. The photocatalytic process may be credited with the effective electron-hole separation and wider area of light response. Moreover, the mechanism of pesticide photocatalytic process was discovered as mineralization of pesticides to carbon dioxide, water, sulphate, and ammonia. Total organic carbon (TOC) analysis was used to quantify the mineralization of pesticides while UV spectroscopy was used to measure the rates of pesticides photocatalytic activity. CuO/Cu2O@MIL-125-NH2 and Fe3O4@MIL-125-NH2 composite demonstrated the maximum pesticide photocatalytic efficiency and outstanding cycle stability. The antimicrobial potency was increased and the inhibition zone was minimised when treated by a parent MIL-125-NH2 and its composites, which is surprising data when employing CuO/Cu2O@MIL-125-NH2 and Fe3O4@MIL-125-NH2 nanocomposite as an anti-bacterial material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call