Abstract

ABSTRACTWe studied the irradiation effects on Ti and Zr surfaces in slightly oxidizing environment (rarefied dry air, 500°C) using multi-charged argon ions in the low MeV range (1 – 9 MeV) to the aim of determining the respective role of the electronic and nuclear stopping power in the operating oxidation process under irradiation. We have shown that ballistic collisions contribute significantly to the enhanced Ti and Zr oxidation under MeV argon bombardment. We have also shown that the projectile energy plays a significant role in the overall process.A significant oxide film thickening is visible on titanium under irradiation, taking the form of a well-defined oxidation peak between 1 and 4 MeV, as a result of the Nuclear Backscattering Spectroscopy and Spectroscopic Ellipsometry studies.A significant oxide film thickening is also visible on zirconium under same irradiation conditions, at 4 and 9 MeV, as a result of the NBS study. Work is in progress in order to determine how the modified oxidation process depends in this case on the projectile energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.