Abstract

The surface of a titanium (Ti) alloy was modified with a self-assembled monolayer of poly(ethylene glycol) methacrylate phosphate (Phosmer PE). A zwitterionic monomer (carboxymethyl betaine, CMB) could be copolymerized with the surface-bound Phosmer PE due to a flexible linker between the Ti alloy surface and a methacryloyl group of Phosmer PE. The poly(CMB) (PCMB)-modified Ti alloy plate exhibited strong suppression of protein adsorption and cell adhesion, and induced approximately twice the amount of calcium (Ca2+) deposition as compared to the unmodified Ti alloy plate. The zwitterionic polymer-modified surfaces not only showed enhanced mineralization clusters creation and growth, but they were also highly non-responsive to biologically derived materials such as proteins and cells. Therefore, it is possible to easily form highly pure and rigid hydroxyapatite layers on Ti alloy surfaces without the incorporation of organic molecules such as proteins. The present surface modification technique and strategy can be applied to implantable orthopedic materials as a means of encouraging integration with host tissues, such as the thigh bone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.