Abstract

Polyimides are attractive candidates for advanced electronic and space applications due to their high performance thermal and mechanical properties. However, the typical intractability and insolubility of polyimides has been a disadvantage. Utilization of the soluble intermediate amic acid can, to some extent, circumvent this problem. However, drawbacks to this approach include the hydrolytic instability of the amic acid and the liberation of water during its subsequent thermal cyclization. Residual stress build-up at the imide-substrate interface may occur due to swelling and drying cycles caused by the loss of water and solvent. In addition, the liberation of volatiles from a polyimide adhesive or coating can lead to the creation of voids which may significantly detract from mechanical properties. Polymeric adhesives must flow in order to provide good wetting of adherend surfaces and consolidation of the bond components. Thus, fully imidized, melt and solution processable, high Tg aromatic polyimides are of great interest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.