Abstract

This study is focused on synthesis of highly efficient Titania/reduced Graphene Oxide (TiO2/rGO) nanocomposites by means of simple hydrothermal technique. The TiO2/rGO were synthesized in different ratios of 0.5, 1.0, 2.0, and 3% by varying the concentration of rGO while the concentration of TiO2 was kept constant and the obtained samples were designated as TrG0.5, TrG1, TrG2, and TrG3 respectively. Different characterization techniques (SEM, TEM, HRTEM, XRD, EDX, TGA, UV-DRS, PL, EIS, and BET) showed high crystallinity, small crystallite size (18.4 nm), high thermal stability, high purity, low band gap energy (Eg = 3.12 eV), and high surface area (65.989 m2/g) for the as-synthesized TiO2/rGO nanocomposite. The efficiencies of TiO2/rGO were determined in terms of brilliant green (BG) dye degradation in aqueous media under UV light. The results revealed that 2% TiO2/rGO (TrG2) showed high efficiency for BG degradation with the kapp of 0.023 min-1 compared to TiO2 alone (kapp of 0.006 min-1). The rate of BG degradation was further synergised by the addition of peroxymonosulfate (PMS) to the system. The degradation of BG was improved to 99.4% by the incorporation of PMS in aqueous media compared to TrG2 alone. Furthermore, the degradation of BG was also examined in various media (neutral, acidic, and basic). The results revealed that by increasing pH of the medium from 3.85 to 8.2 the degradation of BG was enhanced from 99.4 to 99.9% with the corresponding kapp of 0.0602 min-1. Moreover, the photocatalytic degradation of BG followed the pseudo-first-order kinetics. Radical scavenging experiments showed that ●OH and SO4●- were the main species responsible for the degradation of BG under UV light. Besides, for determining the efficiency of as-synthesized TrG2/PMS system, the degradation of BG was also performed in various water types (distilled water, tape water, synthetic wastewater, and industrial wastewater). The degradation products (DPs) of BG and their corresponding pathways were proposed, accordingly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call