Abstract

Titania nanotubes were successfully synthesized by a simple procedure with needle-like CaCO3 as inorganic templates at a room temperature in nonaqueous system. Through the hydrolysis of tetrabutoxytitanium (TBOT), titania crystal nucleus were deposited on the CaCO3 nanoparticles due to heterogeneous nucleation, followed by aggregation condensation on the surface of needle-like CaCO3 cores and removal of CaCO3 to produce hollow titania nanotubes. Its morphological and structural properties were characterized by TEM, SEM, and XRD, respectively. The nanotubes have a uniform tubular hollow structure with one or two big openings ends, the length of about 2.0 μm, the average inner diameters of 100-200 nm, respectively, and a wall thickness of approximately 40 nm. The phase formed was anatase after calcinations at 723 K for 2 h and nanotubes with hollow structure remained their original shapes, and the BET surface area of as-synthesized titania nanotubes was 243.45 m2/g, and decreased to 144.76 m2/g after calcinations

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.