Abstract
TiO2 nanoparticles were synthesized by laser pyrolysis from TiCl4 vapor in air in the presence of ethylene as sensitizer at different working pressures (250-850 mbar) with and without further calcination at 450 °C. The obtained powders were analyzed by energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffractometry, and transmission electron microscopy. Also, specific surface area and photoluminescence with optical absorbance were evaluated. By varying the synthesis parameters (especially the working pressure), different TiO2 nanopowders were obtained, whose photodegradation properties were tested compared to a commercial Degussa P25 sample. Two series of samples were obtained. Series "a" includes thermally treated TiO2 nanoparticles (to remove impurities) that have different proportions of the anatase phase (41.12-90.74%) mixed with rutile and small crystallite sizes of 11-22 nm. Series "b" series represents nanoparticles with high purity, which did not require thermal treatment after synthesis (ca. 1 atom % of impurities). These nanoparticles show an increased anatase phase content (77.33-87.42%) and crystallite sizes of 23-45 nm. The TEM images showed that in both series small crystallites form spheroidal nanoparticles with dimensions of 40-80 nm, whose number increases with increasing the working pressure. The photocatalytic properties have been investigated regarding the photodegradation of ethanol vapors in Ar with 0.3% O2 using P25 powder as reference under simulated solar light. During the irradiation H2 gas production has been detected for the samples from series "b", whereas the CO2 evolution was observed for all samples from series "a".
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.