Abstract

O3-type layered transition metal oxides (NaxTMO2) have attracted extensive attention as a promising cathode material for sodium-ion batteries because of their high capacity. However, the irreversible phase transition especially cycled under high voltage remains a concerning challenge for NaxTMO2. Herein, a Ti-substituted NaNi0.5Co0.2Mn0.3O2 cathode with strongly suppressed phase transition and enhanced storage stability is investigated. The Ti substitution effectively inhibits the irreversible phase transition and alleviates the structural change even charged to 4.3 V during the repeated Na+ deintercalation process. After storing in air or water, the original O3 phase structure of the material is integrally maintained without the generation of impurity phase. As a result, the as-prepared material shows excellent long-term cycle stability and rate performance when charged to a high voltage of 4.3 V.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call