Abstract
Chemotherapy-induced cardiotoxicity (CIC) is a common clinical problem that compromises effective anticancer therapies. Many chemotherapeutics (including anthracyclines, such as doxorubicin) induce the proapoptotic transcription factor p53 in the tumor and nonspecifically in the heart, promoting heart failure. Although inhibition of p53 shows benefit in preclinical heart failure models, it would not be an attractive adjuvant therapy for CIC, because it would prevent tumor regression. A p53-targeting therapy that would decrease chemotherapy-induced apoptosis in the myocardium and, at the same time, enhance apoptosis in the tumor would be ideal. Here, we propose that differences in oxygen tension between the myocardium and the tumor could provide a platform for redox-dependent tissue-specific therapies. We show by coimmunoprecipitation and mass spectrometry that the redox-regulated pyruvate kinase muscle 2 (PKM2) directly binds with p53 and that the redox status of cysteine-423 of tetrameric (but not monomeric) PKM2 is critical for the differential regulation of p53 transcriptional activity. Tetrameric PKM2 suppresses p53 transcriptional activity and apoptosis in a high oxidation state but enhances them in a low oxidation one. We show that the oxidation state (along with cysteine-423 oxidation) is higher in the heart compared to the tumor of the same animal. Treatment with TEPP-46 (a compound that stabilizes tetrameric PKM2) suppressed doxorubicin-induced cardiomyocyte apoptosis, preventing cardiac dysfunction, but enhanced cancer cell apoptosis and tumor regression in the same animals in lung cancer models. Thus, our work suggests that redox-dependent differences in common proteins expressed in the myocardium and tumor can be exploited therapeutically for tissue selectivity in CIC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.