Abstract

It is generally agreed that thyroid hormone stimulates the hepatic synthesis of long chain fatty acids in the rat. However, there are conflicting data about its effects in white adipose tissue, while in brown adipose tissue, lipogenic rates are highest in hypothyroid animals. We have systematically examined the effect of thyroid state on lipogenesis in different rat tissues. Fatty acid synthesis was assessed in vivo, using the incorporation of tritiated water. Hepatic lipogenesis was induced 16-fold between hypothyroid (4.1 +/- 0.6 microns H incorporated/g.h) and hyperthyroid rats (66.5 +/- 13.2 microns H/g.h). Kidney and heart were much less lipogenically active, but also responded positively to thyroid hormone. Both hyper- and hypothyroidism diminished fatty acid synthesis in retroperitoneal fat and had similar, although not significant, effects in epididymal fat. However, epididymal adipocytes, taken from hyperthyroid rats and cultured in vitro, were 3 times more lipogenically active than cells from either hypo- or euthyroid animals. Lipogenesis in sc fat from hyperthyroid rats was enhanced when calculated per g tissue, but was not different when expressed per whole tissue. In brown adipose tissue, lipogenesis was inversely related to thyroid hormone status. Fatty acid synthesis in brain, lung, skin, and bone and muscle did not respond to changes in thyroid state. TLC confirmed that greater than 90% of the incorporated tritium was in fatty acids. Thus, in hypothyroid animals, lipogenesis primarily occurs in skin, bone, muscle, and other nonresponsive organs, whereas in hyperthyroid rats, the liver alone constitutes almost half of all fatty acid synthesis. The fatty acid synthetic pathway provides an excellent model for examining the tissue-specific regulation of gene expression by thyroid hormone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.