Abstract
Cyclooxygenase 2 (Cox-2), an enzyme involved in prostaglandin production, is a key player in the development of pathologic changes, such as colorectal cancer, arteriosclerosis and thrombosis. In this study, we investigated the effects of estrogens, selective estrogen receptor modulators (SERMs), pure antiestrogens and phytoestrogens on the tissue-specific expression of Cox-2 in the uterus and the v. cava of ovariectomized female rats. Cox-2 expression could be detected in the uterine epithelium and in the endothelium of the v. cava. Cox-2 expression was time-dependently stimulated after administration of 17β estradiol (E2) in the uterus. In the v. cava, E2 treatment resulted in a stimulated expression of the progesterone receptor (PR), a gene known to be regulated by E2, whereas Cox-2 was simultaneously down-regulated. Administration of the pure antiestrogen faslodex (Fas) had no effect on Cox-2 expression. In contrast, administration of tamoxifen (Tam) resulted in a decrease of Cox-2 expression in the v. cava but does not stimulate Cox-2 expression in the uterus. Interestingly, the same expression pattern of Cox-2 could be detected after dose-dependent administration of genistein (Gen). Here, down-regulation of Cox-2 could already be detected after administration of merely 0.5 mg/(kg BW) Gen, a dose where no effects on uterine weight were observed. In summary, our results demonstrate a reverse tissue-specific regulation of Cox-2 expression by estrogens in the v. cava and uterus indicating the existence of complex molecular mechanisms which have to be characterized in future studies. Remarkably, Tam and the phytoestrogen Gen, both share the ability to decrease the expression of Cox-2 in the v. cava without effecting its uterine expression. These observations may be of great importance with respect to potential beneficial or adverse effects of estrogens, SERMs and phytoestrogens on the cardiovascular tissue.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.