Abstract

Barrows and gilts of 2 genetic lines with differing lean gain potentials (high-lean = 375 g of fat-free lean/d; low-lean = 280 g of fat-free lean/d) were used to determine tissue and organ weights and compositions from 20 to 125 kg of BW. The experiment was a 2 (genetic line) x 2 (sex) x 5 (BW) factorial arrangement of treatments in a completely randomized design conducted with 2 groups of pigs in 6 replicates (n = 120 pigs). Six pigs from each sex and genetic line were slaughtered at 20 kg of BW and at 25 kg of BW intervals to 125 kg of BW. At slaughter, the internal tissues and organs were weighed. Loin and ham muscles were dissected from the carcass and trimmed of skin and external fat, and the ham was deboned. Residuals from the loin and ham were combined with the remaining carcass. Body components were ground, and their compositions were determined. The results demonstrated that tissue weights increased (P < 0.01) as BW increased. Loin and ham muscle weights increased but at a greater rate in the high-lean line and in gilts resulting in genetic line x BW and sex x BW interactions (P < 0.01). Liver and heart expressed on a BW or a percentage of empty BW basis increased at a greater rate in the high-lean line resulting in a genetic line x BW interaction (P < 0.01). Liver and intestinal tract weights were heavier in barrows than in gilts, significant only at 45 (P < 0.05), 75 (P < 0.01), and 100 (P < 0.05) kg of BW. Loin and ham muscles from the high-lean genetic line and gilts had greater (P < 0.01) water, protein, and ash contents compared with the low-lean genetic line and barrows resulting in genetic line x BW and sex x BW interactions (P < 0.01). The remaining carcass (minus loin and ham muscles) had greater (P < 0.01) amounts of water and protein, and less (P < 0.01) fat in the high-lean genetic line and gilts. The high-lean genetic line and gilts had more total body water, protein, and ash, but less body fat, with these differences diverging as BW increased, resulting in a genetic line x BW interaction (P < 0.01). The results indicated that liver and heart weights were greater in high-lean pigs, reflecting the greater amino acid metabolism, whereas the liver and intestinal tract weights were greater in barrow than gilts, reflecting their greater feed intakes and metabolism of total nutrients consumed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.