Abstract

The renewed interest in the use of high intensity focused ultrasound (US) for minimally invasive magnetic resonance imaging (MRI)-guided thermal therapy has stimulated a review of the interaction mechanisms of US with tissue. Although the study of tissue US properties has been conducted extensively, agreements on the measured values of tissue US absorption are poor. We propose a noninvasive approach to measure tissue US absorption based on a form of MRI calorimetry. US absorption is measured in a small tissue sample through a knowledge of the US intensity distribution incident on the tissue and an MRI measurement of total absorbed energy arising from US exposure. US absorption measurements were conducted at room temperature for ex-vivo bovine liver tissue at 1 MHz, which led to a measured US absorption coefficient of 0.058 Np/cm or 0.504 dB/cm. Because this approach is noninvasive, the experimental complications exhibited in earlier studies are not present. Furthermore, this approach can be applied over a range of frequencies, tissues, and temperatures, which will aid in understanding of biothermal effects of high intensity US to improve thermal therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.