Abstract

About 10% of inherited diseases are caused by nonsense mutations [Trends Mol Med 18 (2012) 688], and nonsense suppression drug therapy promoting translation through premature stop codons is an emerging therapeutic approach. Infantile neuronal ceroid lipofuscinosis (INCL), a childhood neurodegenerative disease, results from mutations in the CLN1 gene encoding the lysosomal enzyme, palmitoyl-protein thioesterase 1 (PPT1) [Biochim Biophys Acta 1832 (2013) 1806, Hum Mutat (2012) 63, Biochim Biophys Acta 1832 (2013) 1881]. The nonsense mutation p.R151X is the most common disease-causing CLN1 mutation Hum Mutat (2012) 63. In the novel Cln1(R151X) mouse model of INCL, we found large, tissue-specific variations in Cln1(R151X) mRNA level and PPT1 residual enzyme activity. These tissue-specific differences strongly influenced the read-through efficiency of ataluren (PTC124), a well-known nonsense suppression drug. A two-day treatment with ataluren (10 mg/kg) increased PPT1 enzyme activity in the liver and muscle, but not in any other tissue examined. Our study identifies a new challenge/hurdle for read-through drug therapy: variable efficiency of read-through therapy in the different tissues/organs because of tissue-specific variations in nonsense mutant transcript levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.