Abstract

Ecological applications of stable isotope data require knowledge on the isotopic turnover rate of tissues, usually described as the isotopic half-life in days (T0.5) or the change in mass (G0.5). Ecological studies increasingly analyse tissues collected non-destructively, such as fish fin and scales, but there is limited knowledge on their turnover rates. Determining turnover rates in situ is challenging, with ex situ approaches preferred. Correspondingly, T0.5 and G0.5 of the nitrogen stable isotope (δ15N) were determined for juvenile barbel Barbus barbus (5.5 ± 0.6 g starting weight) using a diet-switch experiment. δ15N data from muscle, fin and scales were taken during a 125 day post diet-switch period. Whilst isotopic equilibrium was not reached in the 125 days, the δ15N values did approach those of the new diet. The fastest turnover rates were in more metabolically active tissues, from muscle (highest) to scales (lowest). Turnover rates were relatively slow; T0.5 was 84 (muscle) to 145 (scale) days; G0.5 was 1.39 × body mass (muscle) to 2.0 × body mass (scales), with this potentially relating to the slow growth of the experimental fish. These turnover estimates across the different tissues emphasise the importance of estimating half-lives for focal taxa at species and tissue levels for ecological studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.