Abstract

Ferula assafoetida is a medicinal plant of the Apiaceae family that has traditionally been used for its therapeutic value. Particularly, terpenoid and phenylpropanoid metabolites, major components of the root-derived oleo-gum-resin, exhibit anti-inflammatory and cytotoxic activities, thus offering a resource for potential therapeutic lead compounds. However, genes and enzymes for terpenoid and coumarin-type phenylpropanoid metabolism have thus far remained uncharacterized in F. assafoetida. Comparative de novo transcriptome analysis of roots, leaves, stems, and flowers was combined with computational annotation to identify candidate genes with probable roles in terpenoid and coumarin biosynthesis. Gene network analysis showed a high abundance of predicted terpenoid- and phenylpropanoid-metabolic pathway genes in flowers. These findings offer a deeper insight into natural product biosynthesis in F. assafoetida and provide genomic resources for exploiting the medicinal potential of this rare plant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call