Abstract

The estrogen receptor (ER) is present in a wide variety of mammalian tissues and is required for physiological estrogen responses, including estrogen-induced tissue-specific changes in gene expression. We studied the estrogen regulation of the mRNAs encoding the ER in rat uterus, liver, and pituitary. Ovariectomized (21-28 day post surgery) female CD-1 rats were injected daily with 17 beta-estradiol (E2, 10 micrograms/100 g BW) for 0, 1, or 4 h, 1, 3, or 7 days and compared with intact controls. Steady-state levels of ER mRNA were quantified using a human ER cDNA probe. Only one hybridizing species of approximately 6.2 kilobase (kb) was detected in uterine and liver RNA, similar to that observed in MCF7 human breast cancer cells. However, the ER mRNA regulation by E2 differed in direction depending on the tissue examined. In uterus, ER mRNA increased 3- to 6-fold after ovariectomy, and returned to intact levels within 24 h of E2 replacement. In contrast, liver ER mRNA declined 1.5- to 3-fold after ovariectomy and returned to intact levels after 1-3 days of E2. In pituitary tissue two hybridizing forms of ER mRNA were observed, with one species migrating at 6.2 kb, equivalent to the form in other tissues, and a second smaller species at approximately 5.5 kb. The lower molecular weight species varied somewhat in abundance from animal to animal, averaging about 20% of the intensity of the 6.2 kb band. The ER mRNA forms were regulated positively with E2.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.