Abstract
Iron is an essential element for most living organisms. Plants acquire iron from the rhizosphere and have evolved different biochemical and developmental responses to adapt to a low-iron environment. In Arabidopsis, FIT encodes a basic helix-loop-helix transcription factor that activates the expression of iron-uptake genes in root epidermis upon iron deficiency. Here, we report that the gibberellin (GA)-signaling DELLA repressors contribute substantially in the adaptive responses to iron-deficient conditions. When iron availability decreases, DELLAs accumulate in the root meristem, thereby restraining root growth, while being progressively excluded from epidermal cells in the root differentiation zone. Such DELLA exclusion from the site of iron acquisition relieves FIT from DELLA-dependent inhibition and therefore promotes iron uptake. Consistent with this mechanism, expression of a non-GA-degradable DELLA mutant protein in root epidermis interferes with iron acquisition. Hence, spatial distribution of DELLAs in roots is essential to fine-tune the adaptive responses to iron availability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.