Abstract
The RNA-guided CRISPR/Cas9 system has been shown to be a powerful tool for genome editing in various organisms. A comprehensive toolbox for multiplex genome editing has been developed for the silkworm, Bombyx mori, a lepidopteran model insect of economic importance. However, as previous methods mainly relied on delivery of transient Cas9/guide RNA (gRNA), they could not be used in loss-of-function studies of essential genes. Here, we report a simple and versatile tissue-specific genome editing strategy. We perform a proof-of-principle demonstration by establishing and crossing two transgenic B. mori lines, one expressing Cas9 protein in the posterior silk glands (PSGs) and the other constitutively expressing BmlaminA/C (BmLMN) gRNA. All BmLMN alleles in the PSG cells were edited precisely at the target genome region, resulting in diverse mutations. mRNA expression of BmLMN was reduced by up to 75%, and only very low levels of BmLaminA/C protein were detected. Knockout of BmLMN produced obvious defects in gland cell development and cocoon production. In this study, we developed an efficient strategy for spatially controlled genome editing, providing unprecedented opportunities for investigating the function of essential/lethal genes in B. mori, with potential application for other insects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.