Abstract

BackgroundBiological scaffolds composed of tissue-derived extracellular matrix (ECM) can promote homologous (i.e., tissue-specific) cell differentiation through preservation of biophysical and biochemical motifs found in native tissues. Solubilized ECMs derived from decellularized tendon and cartilage have recently been promoted as tissue-specific biomaterials, but whether tissue-specific bioactivity is preserved following solubilization is unknown. This study explored the tissue-specific bioactivity of soluble decellularized tendon and cartilage ECMs on human bone marrow-derived mesenchymal stem cells (MSCs) presented across different culture microenvironments, including two-dimensional (2D) tissue culture plastic, aligned electrospun nanofibers, cell pellets, and cell-seeded photocrosslinkable hydrogels.MethodsTendon and cartilage ECMs were decellularized using established methods and solubilized either via pepsin digestion or urea extraction. The effect of soluble ECMs on cell proliferation and differentiation was initially explored by supplementing basal medium of human MSCs cultured on 2D tissue culture plastic. In subsequent experiments, MSCs were cultured on aligned electrospun nanofibers, ascell pellets, or encapsulated within photocrosslinkable methacrylated gelatin (GelMA) hydrogels. Urea-extracted tendon and cartilage ECMs were added as supplements.ResultsPepsin-digested ECMs did not promote homologous differentiation in human MSCs, whether provided as a medium supplement or three-dimensional (3D) hydrogels. In contrast, urea-extracted ECMs tended to promote tissue-specific differentiation of MSCs cultured in 2D and 3D microenvironments. The application of the small molecule TGF-β signaling inhibitor SB-431542 largely negated the tissue-specific gene expression patterns mediated by tendon and cartilage ECMs. This suggests that the action of endogenous TGF-β was required, but was not sufficient, to impart tissue-specific bioactivity of urea-extracted ECMs. When urea-extracted cartilage ECM was incorporated within a photocurable GelMA hydrogel it independently enhanced chondrogenesis in encapsulated MSCs, and showed additive prochondrogenesis upon TGF-β supplementation in the medium.ConclusionsUrea-extracted ECM fractions of decellularized tendon and cartilage are soluble supplements capable of enhancing tissue-specific differentiation of adult stem cells.

Highlights

  • Biological scaffolds composed of tissue-derived extracellular matrix (ECM) can promote homologous cell differentiation through preservation of biophysical and biochemical motifs found in native tissues

  • Tendon and cartilage ECMs were solubilized through either acid-pepsin digestion or urea extraction, and their respective effects on human Mesenchymal stem cell (MSC) proliferation and gene expression were determined in 2D culture

  • MSCs were cultured as pellets, seeded on aligned nanofibrous scaffolds, or encapsulated in photocrosslinked Methacrylated gelatin (GelMA) hydrogels, and exposed to media supplemented with TGF-β3, urea-extracted tendon ECM, or urea-extracted cartilage ECM

Read more

Summary

Introduction

Biological scaffolds composed of tissue-derived extracellular matrix (ECM) can promote homologous (i.e., tissue-specific) cell differentiation through preservation of biophysical and biochemical motifs found in native tissues. Biomimetic scaffolds, including aligned electrospun nanofibers [5, 6] and hydrogels [7, 8], possess ultrastructural motifs respectively found in native tendon and cartilage which are capable of directing differentiation of mesenchymal stem cells (MSCs) towards a particular musculoskeletal lineage. These effects are further enhanced by exposure to soluble biomolecules known to orchestrate tendon and cartilage development [9,10,11]. An incomplete understanding of tendon and cartilage development and homeostasis limits tissue engineering approaches to regenerate these tissues [15]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call