Abstract

Methylmercury (MeHg) is the most toxic form of mercury and can accumulate in the cells of marine organisms, such as fish, causing adverse effects on various physiological functions. This study examined MeHg accumulation and its toxicological role in antioxidant defenses in tissues, including the liver, gills, and muscle of flounder (Paralichthys olivaceus) juveniles. After 30 d of MeHg exposure (0, 0.1, 1.0, 10.0, and 20.0µgL-1), the accumulation of MeHg in the three tissues correlated positively with the concentration of MeHg and exhibited tissue specificity in the order of liver > gills > muscle. Among the antioxidant markers, the activities of SOD (superoxide dismutase) and GST (glutathione S-transferase) as well as the content of glutathione (GSH) in the liver and gills were induced at 0.1-10.0µgL-1 but repressed at 20.0µgL-1. The activities of SOD and GST and the content of GSH in the muscle significantly increased with increasing MeHg concentration. Catalase (CAT) activity in the liver was induced at 0.1-1.0µgL-1 but inhibited at 10.0-20.0µgL-1, whereas exposure to MeHg did not remarkably affect CAT activity in the gills and muscle. The levels of lipid peroxidation (LPO) increased dose dependently, showing tissue specificity with the highest level in the liver, then the gills, followed by muscles. Overall, higher sensitivity to oxidative stress induced by MeHg was detected in the liver than the gills and muscle. These findings improve our understanding of the tissue-specific accumulation of heavy metals and their roles in antioxidant responses in marine fish subjected to MeHg exposure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call