Abstract

Fruit maturation and tissue differentiation are important topics in plant physiology. These biological phenomena are accompanied by specific alterations in the biological system, such as differences in the type and concentration of metabolites. The secondary metabolism of tomato (Solanum lycopersicum) fruit was monitored by using liquid chromatography (LC) coupled to photo-diode array (PDA) detection, fluorescence detection (FD), and mass spectrometry (MS). Through this integrated approach different classes of compounds were analysed: carotenoids, xanthophylls, chlorophylls, tocopherols, ascorbic acid, flavonoids, phenolic acids, glycoalkaloids, saponins, and other glycosylated derivatives. Related metabolite profiles of peel and flesh were found between several commercial tomato cultivars indicating similar metabolite trends despite the genetic background. For a single tomato cultivar, metabolite profiles of different fruit tissues (vascular attachment region, columella and placenta, epidermis, pericarp, and jelly parenchyma) were examined at the green, breaker, turning, pink, and red stages of fruit development. Unrelated to the chemical nature of the metabolites, behavioural patterns could be assigned to specific ripening stages or tissues. These findings suggest spatio-temporal specificity in the accumulation of endogenous metabolites from tomato fruit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.