Abstract

beta-Glucan synthetase activity in growing regions of pea (Pisum sativum L.) epicotyls was assayed by supplying UDP-glucose to particulate fractions of tissue homogenates or to thin tissue slices. Particulate fractions are less active in forming alkali-insoluble glucan than slices from the same tissue, although many kinetic characteristics (pH and Mg(2+) optimum, apparent K(m)) are similar for the two systems. Synthesis by tissue slices progresses linearly without lag period for at least an hour and is proportional to cut surface area. It is much more rapid from UDP-glucose than from glucose, glucose-1-P, or sucrose. Tests with plasmolyzing agents and trypsin support the conclusion that synthesis from UDP-glucose by slices occurs at accessible surfaces of cut cells. Analyses of glucan products by GLC of partially methylated and acetylated derivatives and by hydrolysis with various beta-glucanases all show that both beta-1,3 and beta-1,4 linkages are formed by particulate fractions and slices at substrate concentrations ranging from micro- to millimolar. beta-1,4 Linkages predominate at low substrate (5 mum) concentration. Kinetic data indicate that the capacity to synthesize beta-1,3-glucan is substrate-activated, and this product predominates in preparations supplied with high (5 mm) substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.