Abstract

Matrix-assisted laser desorption/ionization - imaging mass spectrometry is an alternative tool, which can be implemented in order to obtain and visualize the "omic" signature of tissue samples. Its application to clinical study enables simultaneous imaging-based morphological observations and mass spectrometry analysis. Application of fully informative material like tissue allows obtaining the complex and unique profile of analyzed samples. This knowledge leads to diagnosing disease, studying the mechanism of cancer development, selecting the potential biomarkers as well as correlating obtained images with prognosis. Nevertheless, it is worth noticing that this method is found to be objective but the result of the analysis is mainly influenced by the sample preparation protocol, including the collection of biological material, its preservation, and processing. However, the application of this approach requires a special sample preparation procedure. The main goal of the study is to present the current knowledge on the clinical application of matrix-assisted laser desorption/ionization with imaging mass spectrometry in cancer research, with particular emphasis on the sample preparation step. For this purpose, several protocols based on cryosections and formalin-fixed paraffin-embedded tissue were compiled and compared, taking into account the measured metabolites of potential diagnostic importance for a given type of cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.