Abstract

In this study, the in vivo biocompatibility of physically crosslinked dextran hydrogels was investigated. These hydrogels were obtained by mixing aqueous solutions of dextran grafted with l-lactic acid oligomers and dextran grafted with d-lactic acid oligomers. Gelation occurs due to stereocomplex formation of the lactic acid oligomers of opposite chirality. Since gelation takes some time, in situ gel formation is possible with this system. A number of sterilization methods was evaluated for their effect on the chemical and physical properties of the hydrogel. It was shown that of the investigated options (filtration, gamma irradiation, dry-heat and autoclaving) dry-heat sterilization was the preferred method to prepare sterile gels suitable for in vivo evaluations. Two types of stereocomplex gels were prepared and implanted subcutaneously in rats. The tissue reaction was evaluated over a period of 30 days. A mild ongoing foreign body reaction was observed characterized by infiltration of macrophages. Giant cells were only scarcely formed and the low numbers of lymphocytes showed that priming of the immune system is hardly involved. Importantly, the gels fully degraded in vivo within 15 days, which is in good agreement with the in vitro degradation behaviour of these gels. In conclusion, stereocomplexed dextran-oligolactic gels showed good biocompatibility which makes them suitable candidates for the design of controlled release devices for pharmaceutically active proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.