Abstract

Tissue response to metallic contact and injury remains poorly understood at the level of proteins and lipid changes. We used corneas as a model system (bovine, porcine [n = 300 each], and human corneas [n = 6]) to characterize proteomic and lipidomic reactions to metallic exposure (impaction with iron). We also made a limited investigation into protein extractability and profile changes due to copper, and lead exposure as well. We identified selected proteins after trypsin digestion using an LCQ Deca XP and lipids using a TSQ Quantum Access Max mass spectrometer, respectively. Our findings indicate that iron impaction to corneal tissue results in cleavage of 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase beta-2 variant (PLCB2; 134 kDa) into a 36 kDa species and presence of the epithelial layer is necessary for this cleavage. Penetration of the cornea with other metals (copper and lead) resulted in lower protein extractability from corneal tissue compared with controls but not distinct changes in PLCB2. The changes in protein profiles were unique to the type of metal used for impaction. The depth of injury negatively affected protein extractability and profile compared with controls. These changes were also dependent on several other factors in a complex manner. Iron impaction of corneal tissue for 24 hours results in cleavage of PLCB2 commensurate with significant changes in phosphatidylinositols but not phosphatidylcholines or other phospholipids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.