Abstract

Tissue plasminogen activator activity in the developing cerebellum, as quantified by zymography of cerebellar homogenates from embryonic day (E) 17 to adult mice, shows a peak of activity at postnatal day (P) 7, followed by a steady 75% decrease into adulthood. Northern blot analysis reveals a similar pattern for tissue plasminogen activator mRNA levels, which are low at E17 but increase dramatically, reaching their highest levels of specific mRNA/micrograms RNA in P1-P7 mice and declining about threefold in the adult mouse. In situ hybridization of whole mouse brain sections with a tissue plasminogen activator antisense cRNA probe shows pronounce reactivity in the cerebellum. Although some binding is associated with the cerebellar meninges, the external granule layer is devoid of tissue plasminogen activator mRNA at all ages. However, highly labeled elongated cells, which also bind antibody to neuronal nuclear antigen and are adjacent to Bergmann glial fibers (i.e., migrating granule neurons), are readily visible throughout the molecular and Purkinje layers at P7 and P14. In the adult mouse cerebellum, tissue plasminogen activator mRNA labeling is restricted to cells in the Purkinje/internal granule layers. Thus, tissue plasminogen activator gene expression is induced as granule neurons leave the external granule layer and begin their inward migration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.