Abstract

The role of oxygen in the regulation of the pulpal microcirculation is unknown. This investigation is aimed to measure tissue oxygen tension and blood-flow changes in the pulp of rat lower incisors during graded systemic hyperoxia, and to determine the response of the pulpal vasculature to various oxygen tensions. Twenty-four Sprague–Dawley rats were anaesthetized and artificially ventilated with the appropriate gas mixture. Recessed oxygen-sensitive microelectrodes were used to measure pulpal tissue oxygen tension via a small access cavity filled with saline on the labial surface of the incisor. A laser Doppler flowmeter was used to record pulpal blood-flow. Inspired oxygen was increased stepwise from 20 to 100% in 20% steps. Systemic blood-gas concentrations were measured at each step. Systemic arterial oxygen tension at 100% oxygen ventilation reached 481.2±30.7% of the baseline at 20% oxygen breathing ( n=21). Pulpal tissue oxygen tension did not change significantly whereas pulpal blood-flow fell dose-dependently to 74.6±5.0% at 100% oxygen ventilation ( n=21). Systemic hyperoxia, therefore, induces a significant reduction in pulpal blood-flow whereas pulpal tissue oxygen tension remains relatively stable, indicating an oxygen-dependent local regulatory mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.