Abstract

High-density tissue microarrays (TMA) are useful for profiling protein expression in a large number of samples but their use for clinical biomarker studies may be limited in heterogeneous tumors like prostate cancer. In this study, the optimization and validation of a tumor sampling strategy for a prostate cancer outcomes TMA is performed. Prostate cancer proliferation determined by Ki-67 immunohistochemistry was tested. Ten replicate measurements of proliferation using digital image analysis (CAS200, Bacus Labs, Lombard, IL, USA) were made on 10 regions of prostate cancer from a standard glass slide. Five matching tissue microarray sample cores (0.6 mm diameter) were sampled from each of the 10 regions in the parallel study. A bootstrap resampling analysis was used to statistically simulate all possible permutations of TMA sample number per region or sample. Statistical analysis compared TMA samples with Ki-67 expression in standard pathology immunohistochemistry slides. The optimal sampling for TMA cores was reached at 3 as fewer TMA samples significantly increased Ki-67 variability and a larger number did not significantly improve accuracy. To validate these results, a prostate cancer outcomes tissue microarray containing 10 replicate tumor samples from 88 cases was constructed. Similar to the initial study, 1 to 10 randomly selected cores were used to evaluate the Ki-67 expression for each case, computing the 90th percentile of the expression from all samples used in each model. Using this value, a Cox proportional hazards analysis was performed to determine predictors of time until prostate-specific antigen (PSA) recurrence after radical prostatectomy for clinically localized prostate cancer. Examination of multiple models demonstrated that 4 cores was optimal. Using a model with 4 cores, a Cox regression model demonstrated that Ki-67 expression, preoperative PSA, and surgical margin status predicted time to PSA recurrence with hazard ratios of 1.49 (95% confidence interval [CI] 1.01-2.20, p = 0.047), 2.36 (95% CI 1.15-4.85, p = 0.020), and 9.04 (95% CI 2.42-33.81, p = 0.001), respectively. Models with 3 cores to determine Ki-67 expression were also found to predict outcome. In summary, 3 cores were required to optimally represent Ki-67 expression with respect to the standard tumor slide. Three to 4 cores gave the optimal predictive value in a prostate cancer outcomes array. Sampling strategies with fewer than 3 cores may not accurately represent tumor protein expression. Conversely, more than 4 cores will not add significant information. This prostate cancer outcomes array should be useful in evaluating other putative prostate cancer biomarkers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call