Abstract

Information on localization of Al and As in Tamarix gallica is required in order to better understand the detoxification mechanisms that confer tolerance in this halophyte plant species. Plants were subjected to different Al and As concentrations with and without salt supplementation. High concentrations of As and Al have been found in Tamarix gallica leaves and roots without symptoms of toxicity to the plant, which may be related to the particular compartmentation. A sequential extraction was carried out on leaves and roots to determine and compare the metal compartmentation in the plant. In this study, subcellular localization of As and Al was determined for the first time in roots and leaves of T. gallica, and provided evidence of the detoxification mechanisms of high As and Al concentrations. These results suggest that the subcellular distribution of As and Al play important roles in avoidance of metal toxicity. The most part of Al (that has high toxicity to the plant when available forms are present) was immobilized in cell walls, potentially suppressing its transportation to other subcellular compartments more susceptible to Al toxicity. On the other hand, the greater sequestration of As in the vacuole reduces its toxicity to the remaining cell organelles in the roots, but cell wall confinement remains an important tolerant mechanism in the leaves.

Highlights

  • Metals are natural constituents of soils and occur naturally in the environment (Rascio and Navari-Izzo, 2011)

  • Metal translocation from roots to leaves can be expressed by the translocation factor (TF), and varied from 0.192 ± 0.034 to 0.087 ± 0.010 in the case of Al, showing that the treatment with the lowest Al concentration had the highest TF

  • The opposite pattern was observed for As, with TF varying from 0.071 ± 0.012 to 0.188 ± 0.028, with the highest TF being found in the highest metal concentration supplied with salt (Table 2)

Read more

Summary

Introduction

Metals are natural constituents of soils and occur naturally in the environment (Rascio and Navari-Izzo, 2011). Metal pollution is one of the most serious environmental problems aggravated by human activities as mining and smelting, electroplating, gas exhaust, energy, and fuel production, fertilizer, and pesticide application (Alkorta et al, 2004). Essential and non-essential elements like Cd, Zn, Hg, Pb, Ag, As, Al, among others, are strongly toxic (Upadhyaya et al, 2010). Trace metal elements exert different actions on plants, like blocking essential functional groups, displacing other metal ions, or altering the active conformation of biological molecules (Collins and Stotzky, 1989). Aluminum (Al) represents about 7% of the earth’s solid surface weight. Al is not a free element (Bhalerao and Prabhu, 2013) and Al

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call