Abstract

Tissue kallikreins (KLKs), in particular KLK5, 7 and 14 are the major serine proteases in the skin responsible for skin shedding and activation of inflammatory cell signaling. In the normal skin, their activities are controlled by an endogenous protein protease inhibitor encoded by the SPINK5 gene. Loss-of-function mutations in SPINK5 leads to enhanced skin kallikrein activities and cause the skin disease Netherton Syndrome (NS). We have been developing inhibitors based on the Sunflower Trypsin Inhibitor 1 (SFTI-1) scaffold, a 14 amino acids head-to-tail bicyclic peptide with a disulfide bond. To optimize a previously reported SFTI-1 analogue (I10H), we made five analogues with additional substitutions, two of which showed improved inhibition. We then combined those substitutions and discovered a variant (Analogue 6) that displayed dual inhibition of KLK5 (tryptic) and KLK7 (chymotryptic). Analogue 6 attained a tenfold increase in KLK5 inhibition potency with an Isothermal Titration Calorimetry (ITC) Kd of 20nM. Furthermore, it selectively inhibits KLK5 and KLK14 over seven other serine proteases. Its biological function was ascertained by full suppression of KLK5-induced Protease-Activated Receptor 2 (PAR-2) dependent intracellular calcium mobilization and postponement of Interleukin-8 (IL-8) secretion in cell model. Moreover, Analogue 6 permeates through the cornified layer of in vitro organotypic skin equivalent culture and inhibits protease activities therein, providing a potential drug lead for the treatment of NS.

Highlights

  • The Stratum Corneum forms the outermost layer of human skin and is composed of non-viable flattened corneocytes stacked in multiple layers

  • I10H (IC50 0.76 μM) showed a four and eighty fold potency increase compared to the known Kallikrein 5 (KLK5) inhibitor zinc (IC50 2.94 μM) and the unspecific trypsin-like protease inhibitor p-aminobenzamidine (IC50 60.45 μM) respectively

  • I10H remained a relatively strong KLK5 inhibitor and so we continued with the development I10H analogues

Read more

Summary

Introduction

The Stratum Corneum forms the outermost layer of human skin and is composed of non-viable flattened corneocytes stacked in multiple layers. Skin Tissue Kallikrein Inhibitors Based on SFTI-1 Scaffold connected to insoluble cross-linked proteins underneath the plasma membrane, it becomes an effective barrier to many substances including water. Adjacent corneocytes are further connected by the cell-cell adhesion complex known as corneodesmosomes, comprising specialized proteins such as Desmoglein 1 and Desmocollin 1 [1]. Proteolysis of those structural proteins results in breakdown of corneodesmosomes leading to corneocyte detachment and controlled skin shedding i.e. desquamation [2]. The secreted proteases responsible for corneodesmosome degradation are Kallikrein 5 (KLK5) and Kallikrein 7 (KLK7) [3]. These are serine proteases in the 15-membered human tissue kallikreins family of which KLK5 is tryptic and KLK7 is chymotryptic. KLK5 and KLK14 have been implicated in skin inflammation by activating the PAR-2 pathway leading to release of inflammatory cytokines including IL-8 [5,6,7]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.