Abstract

Cisplatin ( cis-diamminedichloroplatinum II) has emerged as an anticancer drug of considerable value for the chemotherapy of several human neoplasms. However, this agent often causes renal toxicity, which appears to be the dose-limiting untoward effect. The present animal study was undertaken to compare, with regard to kidney injury and renal tissue repair, cisplatin and carboplatin ( cis-diammine-1,1-cyclobutane dicarboxylate platinum II), a platinum derivative more recently introduced in clinics. Female Sprague-Dawley rats (four animals per group) were treated ip with cisplatin (4 or 8 mg/kg, delivered in four consecutive daily injections) or carboplatin (40 mg/kg given in one injection) and terminated 4, 7, and 21 days after drug administration. One hour prior to sacrifice, each animal received ip 200 μCi of [ 3H]thymidine for the measurement of DNA synthesis and cell proliferation (frequency of S-phase cells in renal tissue, determined by histoautoradiography). Cisplatin, particularly at 8 mg/kg, caused severe tubular injury (acute tubular necrosis) culminating in a long-lasting cystic tubular dilatation in the outer stripe of outer medulla. Tubular damage was followed by a sharp proliferative response, indicative of tubular regeneration. However, the proliferative activity was still above basal level at the end of the observation period, suggesting that the tissue repair process had not reached completeness 3 weeks after cisplatin administration. In contrast, carboplatin only induced focal tubular necrosis in proximal tubules. Distal and collecting tubules also showed ultrastructural evidence of hydropic degeneration after exposure to the latter drug. Renal tubular injury associated with carboplatin was followed by a mild proliferative response. From this study, we can infer that carboplatin is less nephrotoxic than cisplatin, but still causes histopathological alterations in renal tissue. Furthermore, the lesser nephrotoxicity of carboplatin has a primary origin and is not due to a more efficient tissue repair reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.