Abstract

The balance between matrix metalloproteinase (MMP) and tissue inhibitor of matrix metalloproteinase (TIMP) is important for extracellular matrix interactions of hematopoietic cells. MMP-independent growth modulating activity for TIMP-1 on B lymphocytes and erythroid progenitors has also been described, but a role for TIMP-1 in myelomonocytic differentiation has not been previously reported. In this study, we demonstrate that TIMP-1 overexpression impairs differentiation of the myeloblastic M1 cell line following interleukin (IL)-6 stimulation. We generated retroviral vectors coexpressing human TIMP-1 and the green fluorescent protein (GFP) and stably transduced murine M1 myeloid cells. TIMP-1 expressing cells showed a large reduction in IL-6-induced macrophage differentiation in vitro that was reversible with a specific monoclonal antibody. The differentiation delay in M1/TIMP-1 cells was also specifically reversible by pharmacologic phosphatidylinositol-3 kinase (PI3-K) inhibition. Additionally, overexpression of a TIMP-1/GFP fusion protein also impaired M1 differentiation and this protein was localized to the cell surface, consistent with an autocrine receptor-mediated mechanism. Surprisingly, TIMP-1 transduced cells had a selective advantage for growth in IL-6, indicating that functional effects on growth and differentiation of M1 cells were primarily through an autocrine mechanism. Intrinsic TIMP-1 expression in myeloid leukemia cells might thus impact upon survival or differentiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call