Abstract

We measured afterdrop and peripheral tissue temperature distribution in eight patients cooled to approximately 17 degrees C during cardiopulmonary bypass and subsequently rewarmed to 36.5 degrees C. A nasopharyngeal probe evaluated trunk and head temperature and heat content. Peripheral tissue temperature (arm and leg temperature) and heat content were estimated using fourth-order regressions and integration over volume from 30 tissue and skin temperatures. Peripheral tissue temperature decreased to 19.7+/-0.9 degrees C during bypass and subsequently increased to 34.3+/-0.7 degrees C during 104+/-18 min of rewarming. The core-to-peripheral tissue temperature gradient was -5.9+/-0.9 degrees C at the end of cooling and 4.7+/-1.5 degrees C at the end of rewarming. The core-temperature afterdrop was 2.2+/-0.4 degrees C and lasted 89+/-15 min. It was associated with 1.1+/-0.7 degrees C peripheral warming. At the end of cooling, temperatures at the center of the upper and lower thigh were (respectively) 8.0+/-5.2 degrees C and 7.3+/-4.2 degrees C cooler than skin temperature. On completion of rewarming, tissue at the center of the upper and lower thigh were (respectively) 7.0+/-2.2 degrees C and 6.4+/-2.3 degrees C warmer than the skin. When estimated systemic heat loss was included in the calculation, redistribution accounted for 73% of the afterdrop, which is similar to the contribution observed previously in nonsurgical volunteers. Temperature afterdrop after bypass at 17 degrees C was 2.2+/-0.4 degrees C, with approximately 73% of the decrease in core temperature resulting from core-to-peripheral redistribution of body heat. Cooling and rewarming were associated with large radial tissue temperature gradients in the thigh.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.