Abstract
The aim of this study was to investigate glucose utilization by individual tissues during epinephrine infusion. First, the applicability of the 2-deoxyglucose (2-DG) tracer technique during in vivo hyperglycemia was investigated in model systems in vitro. Epitrochlearis muscle and spleen cells were incubated with 1.25-20 mM glucose. The discrimination against 2-[14C]DG in glucose metabolic pathways, expressed by the lumped constant, remained unchanged over this wide range of glucose concentrations. It was concluded that in vivo hyperglycemia does not preclude the application of the 2-DG method. In a series of in vivo experiments, chronically catheterized conscious rats fasted for 24 h and were infused with epinephrine (0.2 microgram.kg-1.min-1), which produced a two-fold increase in plasma glucose concentration. 2-[14C]DG was injected 30 min after starting the epinephrine infusion and glucose utilization rates of individual tissues were calculated based on the concentration of phosphorylated 2-DG in samples excised at 70 min. The epinephrine infusion increased glucose utilization rates by 40-160% in hindlimb muscles, skin, ileum, liver, spleen, lung, epididymal fat, and kidney, although no change was found in the brain. Mass action of the increased plasma glucose is likely to play an important role in the enhanced rate of glucose utilization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of applied physiology (Bethesda, Md. : 1985)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.