Abstract

The extrinsic coagulation is recognized as an 'inducible' signalling cascade resulting from tissue factor (TF) upregulation by exposure to clotting zymogen FVII upon inflammation or tissue injury. Following the substantial initiation, an array of proteolytic activation generates mediating signals (active serine proteases: FVIIa, FXa and FIIa) that lead to hypercoagulation with fibrin overproduction manifesting thrombosis. In addition, TF upregulation plays a central role in driving a thrombosis-inflammation circuit. Coagulant mediators (FVIIa, FXa and FIIa) and endproduct (fibrin) are proinflammatory, eliciting tissue necrosis factor, interleukins, adhesion molecules and many other intracellular signals in different cell types. Such resulting inflammation could ensure 'fibrin' thrombosis via feedback upregulation of TF. Alternatively, the resulting inflammation triggers platelet/leukocyte/polymononuclear cell activation thus contributing to 'cellular' thrombosis. TF is very vulnerable to upregulation resulting in hypercoagulability and subsequent thrombosis and inflammation, either of which presents cardiovascular risks. The prevention and intervention of TF hypercoagulability are of importance in cardioprotection. Blockade of inflammation reception and its intracellular signalling prevents TF expression from upregulation. Natural (activated protein C, tissue factor pathway inhibitor, or antithrombin III) or pharmacological anticoagulants readily offset the extrinsic hypercoagulation mainly through FVIIa, FXa or FIIa inhibition. Therefore, anticoagulants turn off the thrombosis-inflammation circuit, offering not only antithrombotic but anti-inflammatory significance in the prevention of cardiovascular complications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call