Abstract

Increased vascular smooth muscle cell (VSMC) proliferation substantially contributes to the pathogenesis of atherosclerosis and intimal hyperplasia after vascular injury. The importance of inflammation in VSMC proliferation is now being recognized. Preventing the inflammatory response is one therapeutic strategy that can be used to inhibit atherosclerosis in the clinic. The present study, using RNA interference and gene transfer techniques, was conducted to investigate the effect of monocyte chemotactic protein-3 (MCP-3) on VSMC proliferation that is a result of TNF-α stimulation, and whether overexpression of the tissue factor pathway inhibitor (TFPI) gene could prevent VSMC proliferation by blocking the MCP-3/CC chemokine receptor 2 (CCR2) pathway. Mouse VSMCs were infected in vitro with recombinant adenoviruses containing either mouse MCP-3-shRNA (Ad-MCP-3-shRNA), the TFPI gene (Ad-TFPI), or the negative control, which was shRNA encoding the sequence for EGFP (Ad-EGFP) or DMEM only. The cells were then stimulated with TNF-α for different time periods on the third day after gene transfer. The data show that VSMC proliferation in the Ad-MCP-3-shRNA and Ad-TFPI groups was markedly decreased using BrdU ELISA and MTT assays; MCP-3-shRNA and TFPI inhibited the expression of MCP-3 and CCR2 after long-term stimulation and inhibited the phosphorylation of ERK1/2 and AKT after short-term stimulation, as shown by ELISA and western blot analysis. This study provides convincing evidence that clarifies the effect of the proinflammatory factor MCP-3 in promoting VSMC proliferation. Our data also show, for the first time, that TFPI has an anti-proliferative role in TNF-α stimulated-VSMCs at least partly by interfering with the MCP-3/CCR2 pathway and then via suppression of the ERK1/2 and PI3K/AKT signaling pathways. We conclude that TFPI gene transfer may be a safe and effective therapeutic tool for treating atherosclerosis and intimal hyperplasia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.