Abstract

Tissue engineering of skeletal muscle could have great advantages in every clinical setting in need of neurovascular muscle transfer, e. g., facial palsy or Volkmann's contracture. There are 2 great obstacles for the clinical application of engineered muscle tissue at the moment: firstly, finding a three-dimensional matrix that matches the demands concerning biocompatibility, stability and elasticity; secondly, the insufficient differentiation of implanted myoblasts, since myoblast differentiation in vivo is barely controllable and subject to a variety of influences. Furthermore axial vascularisation and neurotisation of such tissue-engineered skeletal muscle constructs play a pivotal role for any later application. An overview of the current status of skeletal muscle tissue engineering technologies and concepts for future perspective in this emerging field is presented in this article.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.