Abstract

Due to their good biocompatibility and mechanical integrity, tissue engineering scaffolds have become a principal method of repair and regeneration of osteochondral defects. To improve their intrinsic properties, control their degenerative times, and enhance their cell adhesion and differentiation, numerous scaffold architectures and formation methods have been developed and tested, but the ideal scaffold design is still controversial. Moreover, scaffold fixation has a significant influence on repair and regeneration after implantation. The authors analyzed relative studies to address the latest scaffold designs, including biphasic scaffold, multilayered scaffold, and continuous nonstratified scaffold, and this article compares their advantages and disadvantages. In addition, the authors introduce a novel modified method for scaffold fixation known as magnetic fixation. Both stratified and nonstratified scaffolds can repair osteochondral defects, but continuous nonstratified scaffolds are more biomimetic compared with the native osteochondral structures, and they lead to a better regeneration of hyaline-like cartilage and structured bone tissue. Therefore, the authors suggest continuous nonstratified scaffolds are an effective option for treating osteochondral defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.