Abstract
Tissue-engineered pulmonary arteries could overcome the drawbacks of homografts or prosthetic conduits used in the repair of many congenital cardiac defects. However, the ideal scaffold material for tissue-engineered conduits is still subject of intensive debate. In this study, we evaluated an acellularized allogeneic matrix scaffold for pulmonary artery tissue engineering with and without in-vitro reseeding with autologous endothelial cells in the pulmonary circulation in a growing sheep model. Ovine pulmonary arteries (n = 10) were acellularized by trypsin/ethylenediamine tetraacetic acid incubation. Autologous endothelial cells were harvested from carotid arteries, and the pulmonary conduits were seeded with endothelial cells. We implanted in-vitro, autologous, reendothelialized (group A, n = 5) and acellularized pulmonary conduits (group B, n = 5) in the pulmonary circulation. The animals were sacrificed 6 months after the operation. Explanted valves were examined histologically and by immunohistochemistry. The conduit diameter increased in both groups (group A, 44% +/- 11%; group B, 87% +/- 18%; p < 0.05). In group A, however, a proportional increase in diameter was present, whereas in group B, a disproportionate increase resulting in aneurysm formation was observed. Histologically, the conduit wall integrity was destroyed in group B and preserved in group A. In group B, the extracellularmatrix degenerated with a reduced amount of collagens and proteoglycanes. Furthermore, no elastic fibers were detectable. In contrast, the extracellularmatrix in group A was close to native ovine tissue. Tissue-engineered pulmonary conduits (autologous endothelial cells and allogeneic matrix scaffolds) functioned well in the pulmonary circulation. They demonstrated an increase in diameter and an extracellular matrix comparable to that of native ovine tissue.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.