Abstract

Tissue engineering and regenerative medicine (TE/RM) represents a broad spectrum of cell and biomaterial based approaches aiming to repair, augment and regenerate diseased tissues and organs. The successful recent clinical implantation of tissue engineered trachea, bladder and bladder derivative (Neo-Urinary ConduitTM) has highlighted the emergence of common methodological frameworks for the development of TE/RM approaches that may be broadly applicable towards the regeneration of multiple, disparate tubular organs. Similarly, recent progress towards regeneration of heart, kidney, liver, pancreas, spleen and central nervous system is identifying shared methodologies that may underlie the development of foundational platform technologies broadly applicable towards the regeneration of multiple solid organ systems. Central themes emerging for both tubular and solid neo-organs include the application of a biodegradable scaffold to provide structural support for developing neo-organs and the role of committed or progenitor cell populations in establishing the regenerative micro-environment of key secreted growth factors and extra-cellular matrix critical for catalyzing de novo organogenesis. However, aspects of these strategies currently under active development for tissue engineering of tubular and solid neo-organs may not be relevant for successful commercialization of neo-organs as novel TE/RM products for clinical application. For example, difficulties in large scale sourcing and quality control of biomaterials derived from decellularization of cadaveric organs imply that such biomaterials may be less suitable for incorporation into TE/RM products when compared to biomaterials of synthetic origin. Similarly, TE/RM technologies that attempt to leverage populations of stem and progenitor cells are less likely than platforms focused on committed cell populations or acellular biomaterials to facilitate rapid development of viable products. In this chapter, we will present our experience in the development of the Neo-Bladder AugmentTM, Neo-Urinary ConduitTM and Neo-Kidney AugmentTM to identify elements of this foundational organ regeneration technology platform that may be broadly applicable towards the design and development of additional tubular neo-organ products, including the esophagus and small intestine, the lung, the vasculature and the male or female genitourinary tract as well as additional solid neo-organs. We will focus specifically on highlighting aspects of these neo-organ regenerative platforms conducive to the commercial viability of such technologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call