Abstract

ContextUrethra repair by tissue engineering has been extensively studied in laboratory animals and patients, but is not routinely used in clinical practice. ObjectiveTo systematically investigate preclinical and clinical evidence of the efficacy of tissue engineering for urethra repair in order to stimulate translation of preclinical studies to the clinic. Evidence acquisitionA systematic search strategy was applied in PubMed and EMBASE. Studies were independently screened for relevance by two reviewers, resulting in 80 preclinical and 23 clinical studies of which 63 and 13 were selected for meta-analysis to assess side effects, functionality, and study completion. Analyses for preclinical and clinical studies were performed separately. Full circumferential and inlay procedures were assessed independently. Evaluated parameters included seeding of cells and type of biomaterial. Evidence synthesisMeta-analysis revealed that cell seeding significantly reduced the probability of encountering side effects in preclinical studies. Remarkably though, cells were only sparsely used in the clinic (4/23 studies) and showed no significant reduction of side effects. ln 21 out of 23 clinical studies, decellularized templates were used, while in preclinical studies other biomaterials showed promising outcomes as well. No direct comparison to current clinical practice could be made due to the limited number of randomized controlled studies. ConclusionsDue to a lack of controlled (pre)clinical studies, the efficacy of tissue engineering for urethra repair could not be determined. Meta-analysis outcome measures were similar to current treatment options described in literature. Surprisingly, it appeared that favorable preclinical results, that is inclusion of cells, were not translated to the clinic. Improved (pre)clinical study designs may enhance clinical translation. Patient summaryWe reviewed all available literature on urethral tissue engineering to assess the efficacy in preclinical and clinical studies. We show that improvements to (pre)clinical study design is required to improve clinical translation of tissue engineering technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.