Abstract

The slowness of epithelialization on the artificial trachea that has been successfully used in humans is a problem. The purpose of this study was to develop a way to regenerate the epithelium on the surface of this artificial trachea. In an in vitro study, isolated rat tracheal epithelial cells were seeded on a collagenous gel that was stratified on a collagenous sponge. Histologic and immunohistochemical examinations were made. In an in vivo study, we transplanted grafts with green fluorescent protein-positive tracheal epithelial cells onto the tracheal defects of normal rats. At 3, 7, 14, and 30 days after the operation, histologic and immunohistochemical examinations were made. In the in vitro study, the 3 layers--the epithelium, gel, and sponge--could be observed. The epithelium expressed cytokeratin 14, cytokeratin 18, and occludin. In the in vivo study, the artificial trachea was covered with epithelium at 3 days after operation, and then the epithelium differentiated from single- or double-stratified squamous epithelium into columnar ciliated epithelium. Green fluorescent protein-positive cells were found 3 days after operation. We believe that the method used in our experiment is an effective way to regenerate the epithelium on the surface of an artificial trachea. With further experimentation, this method should be suitable for clinical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.