Abstract

Cardiovascular disease (CVD) is a leading cause of death and hospitalization worldwide. The need for small caliber vessels ( < 6mm) to treat CVD patients has grown; however the availability of autologous vessels in cardiac and peripheral bypass candidates is limited. The search for an alternative vessel source is widespread with both natural and synthetic tissue engineered materials being investigated as scaffolds. Despite decades of exhaustive studies with decellularized extracellular matrices (ECM) and synthetic graft materials, the field remains in search of a commercially viable biomaterial construct substitute. While the previous materials have been assessed by evaluating their compatibility with fibroblasts, smooth muscle cells and endothelial cells, current materials are being conceived based on their interactions with stem cells, progenitor cells and monocytes, as the latter may hold the key to repair and regeneration. The graft's ability to recruit and maintain these cells has become a major research focus. The successful tissue engineering of a small caliber vessel graft requires the use of optimal material chemistry and biological function to promote cell recruitment into the graft while maintaining each functional phenotype during vessel tissue maturation. The discussion of these significant research challenges constitutes the focus of this review.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.